Sequences And Series Ques 4

  1. The sum of first $9$ terms of the series $\frac{1^3}{1}+\frac{1^3+2^3}{1+3}+\frac{1^3+2^3+3^3}{1+3+5}+\ldots$ is

(2015)

(a) $71$

(b) $96$

(c) $142$

(d) $192$

Show Answer

Answer:

Correct Answer: 4.(b)

Solution: (b) PLAN

Write the nth term of the given series and simplify it to get its lowest form. Then, apply, $\mathrm{S}_n=\sum \mathrm{T}_n$

Given series is $\frac{1^3}{1}+\frac{1^3+2^3}{1+3}+\frac{1^3+2^3+3^3}{1+3+5}+\ldots$

Let $T_n$ be the $n$th term of the given series.

$ \begin{aligned} \therefore T_n & =\frac{1^3+2^3+3^3+\ldots+n^3}{1+3+5+\ldots+\text { upto } n \text { terms }} \\ & =\frac{\left\{\frac{n(n+1)}{2}\right\}^2}{n^2}=\frac{(n+1)^2}{4} \\ S_9 & \left.=\sum_{n=1}^9 \frac{(n+1)^2}{4}=\frac{1}{4}\left(2^2+3^2+\ldots+10^2\right)+1^2-1^2\right] \\ & =\frac{1}{4}\left[\frac{10(10+1)(20+1)}{6}-1\right]=\frac{384}{4}=96 \end{aligned} $



Table of Contents