Sequences And Series Ques 45

The sum of the first $n$ terms of the series $1^{2}+2 \cdot 2^{2}+3^{2}+2 \cdot 4^{2}+5^{2}+2 \cdot 6^{2}+\ldots$ is $\frac{n(n+1)^{2}}{2}$, when $n$ is even. When $n$ is odd, the sum is …. .

(1988, 2M)

Show Answer

Answer:

Correct Answer: 45.[$\frac{n^{2}(n+1)}{2}$]

Solution:

Formula:

Important Results:

  1. Here, $1^{2}+2 \cdot 2^{2}+3^{2}+2 \cdot 4^{2}+5^{2}+\ldots$ upto $n$ terms

$ =\frac{n(n+1)^{2}}{2} $

[when $n$ is even] … (i)

When $n$ is odd, $1^{2}+2 \cdot 2^{2}+3^{2}+2 \cdot 4^{2}+5^{2} \ldots+n^{2}$

$ \begin{aligned} & =\{1^{2}+2 \cdot 2^{2}+3^{2}+2 \cdot 4^{2}+\ldots+2(n-1)^{2} \}+n^{2} \\ & =\{\frac{(n-1)(n)^{2}}{2}\}+n^{2} \quad \text { [from Eq. (i)] } \\ & =n^{2} (\frac{n-1}{2}+1)=n^{2} \frac{(n+1)}{2} \end{aligned} $

$\therefore 1^{2}+2 \cdot 2^{2}+3^{2}+2 \cdot 4^{2}+\ldots$ upto $n$ terms, when $n$ is odd

$ =\frac{n^{2}(n+1)}{2} $



Table of Contents