Sequences And Series Ques 5

  1. If $\alpha \in\left(0, \frac{\pi}{2}\right)$, then $\sqrt{x^2+x}+\frac{\tan ^2 \alpha}{\sqrt{x^2+x}}$ is always greater than or equal to

(2003, 2M)

(a) $2 \tan \alpha$

(b) $1$

(c) $2$

(d) $\sec ^2 \alpha$

Show Answer

Answer:

Correct Answer: 5.(a)

Solution: (a) Here, $\alpha \in\left(0, \frac{\pi}{2}\right) \Rightarrow \tan \alpha>0$

$ \therefore \quad \frac{\sqrt{x^2+x}+\frac{\tan ^2 \alpha}{\sqrt{x^2+x}}}{2} \geq \sqrt{\sqrt{x^2+x} \cdot \frac{\tan ^2 \alpha}{\sqrt{x^2+x}}} $

[using $\mathrm{AM} \geq \mathrm{GM}$ ]

$\Rightarrow \quad \sqrt{x^2+x}+\frac{\tan ^2 \alpha}{\sqrt{x^2+x}} \geq 2 \tan \alpha$



Table of Contents