Sequences And Series Ques 67

Find three numbers $a, b, c$ between $2$ and $18$ such that (i) their sum is $25$ . (ii) the numbers $2, a, b$ are consecutive terms of an AP. (iii) the numbers $b, c, 18$ are consecutive terms of a GP.

(1983, 2M)

Show Answer

Answer:

Correct Answer: 67.$(a=5)(b=8)(c=12)$

Solution:

Formula:

Geometric Progression:

  1. If $a, b, c \in(2,18)$, then

$ a+b+c=25 $ $\quad$ …….(i)

Since, $2, a, b$ are in AP.

$\Rightarrow \quad 2 a=b+2$ $\quad$ …….(ii)

and $b, c, 18$ are in GP.

$\Rightarrow \quad c^{2}=18 b$ $\quad$ …….(iii)

From Eqs. (i), (ii) and (iii),

$ \begin{aligned} & \frac{b+2}{2}+b+\sqrt{18 b}=25 \\ & \Rightarrow \quad 3 b+2+6 \sqrt{2} \sqrt{b}=50 \\ & \Rightarrow \quad 3 b+6 \sqrt{2} \sqrt{b}-48=0 \\ & \Rightarrow \quad b+2 \sqrt{2} \sqrt{b}-16=0 \\ & \Rightarrow \quad b+4 \sqrt{2} \sqrt{b}-2 \sqrt{2} \sqrt{b}-16=0 \\ & \Rightarrow \sqrt{b}(\sqrt{b}+4 \sqrt{2})-2 \sqrt{2}(\sqrt{b}+4 \sqrt{2})=0 \\ & \Rightarrow \quad(\sqrt{b}-2 \sqrt{2})(\sqrt{b}+4 \sqrt{2})=0 \\ & \Rightarrow \quad b=8, a=5 \\ & \text { and } \quad c=12 \end{aligned} $



Table of Contents