Sequences And Series Ques 68

Does there exist a geometric progression containing $27$,$8 $ and $12$ as three of its term? If it exists, then how many such progressions are possible?

(1982, 2M)

Show Answer

Answer:

Correct Answer: 68.(Yes, infinite)

Solution:

Formula:

Geometric Progression:

  1. Let $27,8,12$ be three terms of a GP.

$ \begin{aligned} & \Rightarrow \quad t _m=27, t _n=8 \text { and } t _p=12 \\ & A R^{m-1}=27, A R^{n-1}=8 \\ & \text { and } A R^{p-1}=12 \\ & \therefore \quad R=(\frac{27}{8})^{1 /(m-n)} \text { and } R=(\frac{8}{12})^{1 /(n-p)} \\ & \Rightarrow \quad (\frac{27}{8})^{1 /(m-n)}=(\frac{2}{3})^{1 /(n-p)} \\ & \Rightarrow \quad 3^{3 /(m-n)} \cdot 3^{1 /(n-p)}=2^{1 /(n-p)} \cdot 2^{3 /(m-n)} \\ & \Rightarrow \quad \frac{3^{\frac{3}{m-n}+\frac{1}{n-p}}}{2^{\frac{1}{n-p}+\frac{3}{m-n}}}=1 \\ & \therefore \quad \frac{3}{m-n}+\frac{1}{n-p}=0 \text { and } \frac{1}{n-p}+\frac{3}{m-n}=0 \\ & \Rightarrow \quad 3(n-p)=n-m \text { and } \quad 2 n=3 p-m \end{aligned} $

Hence, there exists infinite GP for which $27$, $8$ and $12$ as three of its terms.



Table of Contents