Sequences And Series Ques 7

  1. If $a, b, c$ are positive real numbers such that $a+b+c+d=2$, then $M=(a+b)(c+d)$ satisfies the relation

$(2000,2 \mathrm{M})$

(a) $0<M \leq 1$

(b) $1 \leq M \leq 2$

(c) $2 \leq M \leq 3$

(d) $3 \leq M \leq 4$

Show Answer

Answer:

Correct Answer: 7.(a)

Solution: (a) Since, $\mathrm{AM} \geq \mathrm{GM}$, then

$ \frac{(a+b)+(c+d)}{2} \geq \sqrt{(a+b)(c+d)} \Rightarrow M \leq 1 $

Also, $ (a+b)+(c+d)>0 \quad [\because a, b, c, d>0]$

$\therefore \quad 0<M \leq 1 $



Table of Contents