Sequences And Series Ques 73

Let $a, b$ and $c$ be the $ 7$ th, $ 11$ th and $ 13$ th terms respectively of a non-constant AP. If these are also the three consecutive terms of a GP, then $\frac{a}{c}$ is equal to

(a) $ 2$

(b) $\frac{7}{13}$

(c) $ 4$

(d) $\frac{1}{2}$

(2019 Main, 9 Jan II)

Show Answer

Answer:

Correct Answer: 73.(c)

Solution:

Formula:

Geometric Progression:

  1. Let $A$ be the Ist term of $AP$ and $d$ be the common difference.

$ \therefore \quad 7 \text { th term }=a=A+6 d $

$[\because n$th term $=A+(n-1) d]$

$11$ th term $=b=A+10 d$

$13$ th term $=c=A+12 d$

$\because a, b, c$ are also in GP

$\therefore b^{2}=a c$

$\Rightarrow(A+10 d)^{2}=(A+6 d)(A+12 d)$

$\Rightarrow A^{2}+20 A d+100 d^{2}=A^{2}+18 A d+72 d^{2}$

$\Rightarrow 2 A d+28 d^{2}=0$

$\Rightarrow 2 d(A+14 d)=0$

$\Rightarrow d=0$ or $A+14 d=0$

But $\quad d \neq 0$

$[\because$ the series is non constant AP]

$\Rightarrow \quad A=-14 d$

$\therefore \quad a=A+6 d=-14 d+6 d=-8 d$

and $\quad c=A+12 d=-14 d+12 d=-2 d$

$\Rightarrow \quad \frac{a}{c}=\frac{-8 d}{-2 d}=4$



Table of Contents