Sequences And Series Ques 73
Let $a, b$ and $c$ be the $ 7$ th, $ 11$ th and $ 13$ th terms respectively of a non-constant AP. If these are also the three consecutive terms of a GP, then $\frac{a}{c}$ is equal to
(a) $ 2$
(b) $\frac{7}{13}$
(c) $ 4$
(d) $\frac{1}{2}$
(2019 Main, 9 Jan II)
Show Answer
Answer:
Correct Answer: 73.(c)
Solution:
Formula:
- Let $A$ be the Ist term of $AP$ and $d$ be the common difference.
$ \therefore \quad 7 \text { th term }=a=A+6 d $
$[\because n$th term $=A+(n-1) d]$
$11$ th term $=b=A+10 d$
$13$ th term $=c=A+12 d$
$\because a, b, c$ are also in GP
$\therefore b^{2}=a c$
$\Rightarrow(A+10 d)^{2}=(A+6 d)(A+12 d)$
$\Rightarrow A^{2}+20 A d+100 d^{2}=A^{2}+18 A d+72 d^{2}$
$\Rightarrow 2 A d+28 d^{2}=0$
$\Rightarrow 2 d(A+14 d)=0$
$\Rightarrow d=0$ or $A+14 d=0$
But $\quad d \neq 0$
$[\because$ the series is non constant AP]
$\Rightarrow \quad A=-14 d$
$\therefore \quad a=A+6 d=-14 d+6 d=-8 d$
and $\quad c=A+12 d=-14 d+12 d=-2 d$
$\Rightarrow \quad \frac{a}{c}=\frac{-8 d}{-2 d}=4$