Sequences And Series Ques 8

  1. The harmonic mean of the roots of the equation $(5+\sqrt{2}) x^2-(4+\sqrt{5}) x+8+2 \sqrt{5}=0$ is

(1999, 2M)

(a) $2$

(b) $4$

(c) $6$

(d) $8$

Show Answer

Answer:

Correct Answer: 8.(b)

Solution: (b) Let $\alpha, \beta$ be the roots of given quadratic equation. Then,

$ \alpha+\beta=\frac{4+\sqrt{5}}{5+\sqrt{2}} \quad \text { and } \quad \alpha \beta=\frac{8+2 \sqrt{5}}{5+\sqrt{2}} $

Let $H$ be the harmonic mean between $\alpha$ and $\beta$, then

$ H=\frac{2 \alpha \beta}{\alpha+\beta}=\frac{16+4 \sqrt{5}}{4+\sqrt{5}}=4 $



Table of Contents