Theory Of Equations Ques 1

  1. If $\alpha, \beta$ and $\gamma$ are three consecutive terms of a non-constant GP such that the equations $\alpha x^2+2 \beta x+\gamma=0$ and $x^2+x-1=0$ have a common root, then, $\alpha(\beta+\gamma)$ is equal to

(2019 Main, 12 April II)

(a) $0$

(b) $\alpha \beta$

(c) $\alpha \gamma$

(d) $\beta \gamma$

Show Answer

Answer:

Correct Answer: 1.(d)

Solution: (d) Given $\alpha, \beta$ and $\gamma$ are three consecutive terms of a non-constant GP.

Let $\quad \alpha=\alpha, \beta=\alpha r, \gamma=\alpha r^2,\{r \neq 0,1\}$

and given quadratic equation is

$ \alpha x^2+2 \beta x+\gamma=0 $ $\quad$ ……..(i)

On putting the values of $\alpha, \beta, \gamma$ in Eq. (i), we get

$ \begin{aligned} & \alpha x^2+2 \alpha e r x+\alpha r^2=0 \\ & \Rightarrow \quad x^2+2 r x+r^2=0 \\ & \Rightarrow \quad(x+r)^2=0 \\ & \Rightarrow \quad x=-r \\ \end{aligned} $

$\because \quad$ The quadratic equations $\alpha x^2+2 \beta x+\gamma=0$ and $x^2+x-1=0$ have a common root, so

$x=-r$ must be root of equation $x^2+x-1=0$, so

$ r^2-r-1=0 $

Now,

$ \begin{aligned} \alpha(\beta+\gamma) & =\alpha\left(\alpha r+\alpha r^2\right) \\ & =\alpha^2\left(r+r^2\right) \end{aligned} $

From the options,

$ \begin{aligned} & \quad \beta \gamma=\alpha r \cdot \alpha r^2=\alpha^2 r^3=\alpha^2\left(r+r^2\right) \\ & \therefore \quad \alpha\left(\because r^2-r-1=0 \Rightarrow r^3=r+r^2\right] \\ & \therefore \quad \alpha(\beta)=\beta \gamma \end{aligned} $



Table of Contents