Trigonometrical Ratios And Identities Ques 14

$3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+4\left(\sin ^{6} x+\cos ^{6} x\right)$ equals

$(1995,2 M)$

(a) 11

(b) 12

(c) 13

(d) 14

Show Answer

Answer:

Correct Answer: 14.(c)

Solution:

Formula:

Pythagorean Identities:

  1. Given expression $=$

$3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+4\left(\sin ^{6} x+\cos ^{6} x\right)$

$=3(1-\sin 2 x)^{2}+6(1+\sin 2 x)+4\left(\sin ^{2} x+\cos ^{2} x\right)^{3}$ $-3 \sin ^{2} x \cos ^{2} x\left(\sin ^{2} x+\cos ^{2} x\right) $

$=3\left(1-2 \sin 2 x+\sin ^{2} 2 x\right)+6+6 \sin 2 x$ $ +4\left(1-3 \sin ^{2} x \cos ^{2} x\right) $

$=3\left(1-2 \sin 2 x+\sin ^{2} 2 x+2+2 \sin 2 x\right)+4 \quad (1-\frac{3}{4} \cdot \sin ^{2} 2 x)$

$=13+3 \sin ^{2} 2 x-3 \sin ^{2} 2 x=13$



Table of Contents