Trigonometrical Ratios And Identities Ques 15

The value of the expression $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$ is equal to

$(1988,2 M)$

(a) 2

(b) $2 \sin 20^{\circ} /\sin 40^{\circ}$

(c) 4

(d) $4 \sin 20^{\circ} /\sin 40^{\circ}$

Show Answer

Answer:

Correct Answer: 15.(c)

Solution:

Formula:

Sum & Difference Identities:

  1. Given expression $=$

$\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}=\tan 60^{\circ} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$

$ =\frac{\sin 60^{\circ} \cos 20^{\circ}-\cos 60^{\circ} \cdot \sin 20^{\circ}}{\cos 60^{\circ} \cdot \sin 20^{\circ} \cdot \cos 20^{\circ}} $

$ =\frac{\sin \left(60^{\circ}-20^{\circ}\right)}{\cos 60^{\circ} \cdot \sin 20^{\circ} \cdot \cos 20^{\circ}}=\frac{\sin 40^{\circ}}{\frac{1}{2} \cdot \sin 20^{\circ} \cos 20^{\circ}} $

$ =\frac{2 \sin 20^{\circ} \cos 20^{\circ}}{\frac{1}{2} \sin 20^{\circ} \cos 20^{\circ}}=4$



Table of Contents