Trigonometrical Ratios And Identities Ques 16

The expression

$ \begin{aligned} 3 [\sin ^{4} (\frac{3 \pi}{2}-\alpha)+ & \sin ^{4}(3 \pi+\alpha) ]\\ & -2 [\sin ^{6} (\frac{\pi}{2}+\alpha)+\sin ^{6}(5 \pi-\alpha)] \end{aligned} $

is equal to

(a) 0

(b) 1

(c) 3

(d) $\sin 4 \alpha+\cos 6 \alpha$

$(1986,2 M)$

Show Answer

Answer:

Correct Answer: 16.(b)

Solution:

Formula:

Periodicity Identities (in Radians):

  1. Given expression $=$

$ \begin{aligned} 3 [ \sin ^{4} & (\frac{3 \pi}{2}-\alpha)+\sin ^{4}(3 \pi+\alpha)]-2 [\sin ^{6} (\frac{\pi}{2}+\alpha)] \\ & =3\left(\cos ^{4} \alpha+\sin ^{4} \alpha\right)-2\left(\cos ^{6} \alpha+\sin ^{6} \alpha\right) \\ & =3\left(1-2 \sin ^{2} \alpha \cos ^{2} \alpha\right)-2\left(1-3 \sin ^{2} \alpha \cos ^{2} \alpha\right) \\ & =3-6 \sin ^{2} \alpha \cos ^{2} \alpha-2+6 \sin ^{2} \alpha \cos ^{2} \alpha=1 \end{aligned} $



Table of Contents