Trigonometrical Ratios And Identities Ques 18

Given $A=\sin ^{2} \theta+\cos ^{4} \theta$, then for all real values of $\theta$

(a) $1 \leq A \leq 2$

(b) $\frac{3}{4} \leq A \leq 1$

(c) $\frac{13}{16} \leq A \leq 1$

(d) $\frac{3}{4} \leq A \leq \frac{13}{16}$

$(1980,1 M)$

Show Answer

Answer:

Correct Answer: 18.(b)

Solution:

Formula:

Domain and Range of Trigonometric Functions:

  1. Given, $A=\sin ^{2} \theta+\left(1-\sin ^{2} \theta\right)^{2}$

$ \begin{array}{ll} \Rightarrow & A=\sin ^{4} \theta-\sin ^{2} \theta+1 \\ \Rightarrow & A=(\sin ^{2} \theta-\frac{1}{2})^{2}+\frac{3}{4} \\ \Rightarrow & 0 \leq (\sin ^{2} \theta-\frac{1}{2})^{2} \leq \frac{1}{4} \quad\left[\because 0 \leq \sin ^{2} \theta \leq 1\right] \\ \therefore & \frac{3}{4} \leq A \leq 1 \end{array} $



Table of Contents