Trigonometrical Ratios And Identities Ques 23

If $\frac{\sin ^{4} x}{2}+\frac{\cos ^{4} x}{3}=\frac{1}{5}$, then

(2009)

(a) $\tan ^{2} x=\frac{2}{3}$

(b) $\frac{\sin ^{8} x}{8}+\frac{\cos ^{8} x}{27}=\frac{1}{125}$

(c) $\tan ^{2} x=\frac{1}{3}$

(d) $\frac{\sin ^{8} x}{8}+\frac{\cos ^{8} x}{27}=\frac{2}{125}$

Show Answer

Answer:

Correct Answer: 23.(a,b)

Solution:

Formula:

Pythagorean Identities:

  1. $\frac{\sin ^{4} x}{2}+\frac{\cos ^{4} x}{3}=\frac{1}{5} \Rightarrow \frac{\sin ^{4} x}{2}+\frac{\left(1-\sin ^{2} x\right)^{2}}{3}=\frac{1}{5}$

$\Rightarrow \quad \frac{\sin ^{4} x}{2}+\frac{1+\sin ^{4} x-2 \sin ^{2} x}{3}=\frac{1}{5}$

$\Rightarrow \quad 5 \sin ^{4} x-4 \sin ^{2} x+2=\frac{6}{5}$

$\Rightarrow \quad 25 \sin ^{4} x-20 \sin ^{2} x+4=0$

$ \Rightarrow \quad \left(5 \sin ^{2} x-2\right)^{2}=0 $

$\Rightarrow \quad \sin ^{2} x =\frac{2}{5} $

$\cos ^{2} x =\frac{3}{5}, \tan ^{2} x=\frac{2}{3} $

$\therefore \quad \frac{\sin ^{8} x}{8}+\frac{\cos ^{8} x}{27} =\frac{1}{125}$



Table of Contents