Trigonometrical Ratios And Identities Ques 24

For a positive integer $n$, let

$ \begin{aligned} & f _n(\theta)=\tan \frac{\theta}{2}(1+\sec \theta)(1+\sec 2 \theta) \\ & \left(1+\sec 2^{2} \theta\right) \ldots \quad\left(1+\sec 2^{n} \theta\right), \text { then } \end{aligned} $

(1999, 3M)

(a) $f _2 (\frac{\pi}{16})=1$

(b) $f _3 (\frac{\pi}{32})=1$

(c) $f _4 (\frac{\pi}{64})=1$

(d) $f _5 (\frac{\pi}{128})=1$

Show Answer

Answer:

Correct Answer: 24.(a,b,c,d)

Solution:

Formula:

Double Angle Identities:

  1. NOTE: Multiplicative loop is very important approach in IIT Mathematics.

$ \begin{aligned} & \begin{aligned} \tan \frac{\theta}{2}(1+\sec \theta) & =\frac{\sin \theta / 2}{\cos \theta / 2} \cdot 1+\frac{1}{\cos \theta} \\ & =\frac{(\sin \theta / 2) 2 \cos ^{2} \theta / 2}{(\cos \theta / 2) \cos \theta} \\ & =\frac{(2 \sin \theta / 2) \cos \theta / 2}{\cos \theta}=\frac{\sin \theta}{\cos \theta}=\tan \theta \\ \therefore \quad f _n(\theta) & =(\tan \theta / 2)(1+\sec \theta) \\ (1+ & \sec 2 \theta)\left(1+\sec 2^{2} \theta\right) \ldots\left(1+\sec 2^{n} \theta\right) \\ & =(\tan \theta)(1+\sec 2 \theta)\left(1+\sec 2^{2} \theta\right) \ldots\left(1+\sec 2^{n} \theta\right) \\ & =\tan 2 \theta \cdot\left(1+\sec 2^{2} \theta\right) \ldots\left(1+\sec 2^{n} \theta\right) \\ & =\tan \left(2^{n} \theta\right) \end{aligned} \end{aligned} $

Now, $\quad f _2 \frac{\pi}{16}=\tan 2^{2} \cdot \frac{\pi}{16}=\tan \frac{\pi}{4}=1$

Therefore, (a) is the answer.

$ f _3 \frac{\pi}{32}=\tan 2^{3} \cdot \frac{\pi}{32}=\tan \frac{\pi}{4}=1 $

Therefore, (b) is the answer.

$ f _4 \frac{\pi}{64}=\tan 2^{4} \cdot \frac{\pi}{64}=\tan \frac{\pi}{4}=1 $

Therefore, (c) is the answer.

$ f _5 \frac{\pi}{128}=\tan 2^{5} \cdot \frac{\pi}{128}=\tan \frac{\pi}{4}=1 $

Therefore, (d) is the answer.



Table of Contents