Trigonometrical Ratios And Identities Ques 25

Match the conditions/expressions in Column I with values in Column II.

$(\sin 3 \alpha) /(\cos 2 \alpha)$ is

$(1992,2 M)$

Column I Column II
A. positive p. $(13 \pi / 48,14 \pi / 48)$
B. negative q. $(14 \pi / 48,18 \pi / 48)$
r. $(18 \pi / 48,23 \pi / 48)$
s. $(0, \pi / 2)$
Show Answer

Answer:

Correct Answer: 25.$(A \rightarrow r; B \rightarrow p )$

Solution:

Formula:

Domain and Range of Trigonometric Functions:

  1. In the interval $(\frac{13 \pi}{48}, \frac{14 \pi}{48}), \cos 2 \alpha<0$ and $\sin 3 \alpha>0$.

$\Rightarrow \frac{\sin 3 \alpha}{\cos 2 \alpha}$ is negative, therefore $B \rightarrow p$.

Again, in the interval $(\frac{18 \pi}{48}, \frac{23 \pi}{48})$, both $\sin 3 \alpha$ and $\cos 2 \alpha$ are negative, so

$\frac{\sin 3 \alpha}{\cos 2 \alpha}$ is positive, therefore $A \rightarrow r$.



Table of Contents