Trigonometrical Ratios And Identities Ques 26

If $k=\sin (\frac{\pi}{18}) \sin (\frac{5 \pi}{18}) \sin (\frac{7 \pi}{18})$, then the numerical value of $k$ is…..

$(1993,2 M)$

Show Answer

Answer:

Correct Answer: 26.$(\frac{1}{8})$

Solution:

Formula:

Double Angle Identities:

  1. Using the relation,

$ \sin \theta \sin (\frac{\pi}{3}-\theta) \sin (\frac{\pi}{3}+\theta)=\frac{\sin 3 \theta}{4} $

Taking $\theta=\frac{\pi}{18}$, we get

$ \sin \frac{\pi}{18} \cdot \sin \frac{5 \pi}{18} \cdot \sin \frac{7 \pi}{18}=\frac{\sin \frac{\pi}{6}}{4}=\frac{1}{8} $

Alternative Method

Given, $\quad k=\sin 10^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ}$

$=\cos 80^{\circ} \cdot \cos 40^{\circ} \cdot \cos 20^{\circ}$

$=\cos A \cdot \cos 2 A \cdot \cos 2^{2} A=\frac{\sin 2^{3} A}{2^{3} \sin A}$

where, $A=20^{\circ}$

$ =\frac{\sin 160^{\circ}}{8 \sin 20^{\circ}}=\frac{\sin \left(180^{\circ}-20^{\circ}\right)}{8 \sin 20^{\circ}}=\frac{\sin 20^{\circ}}{8 \sin 20^{\circ}}=\frac{1}{8} $



Table of Contents