Trigonometrical Ratios And Identities Ques 27

The value of

$\sin \frac{\pi}{14} \cdot \sin \frac{3 \pi}{14} \cdot \sin \frac{5 \pi}{14} \cdot \sin \frac{7 \pi}{14} \cdot \sin \frac{9 \pi}{14} \cdot \sin \frac{11 \pi}{14} \cdot \sin \frac{13 \pi}{14}$ is equal to……

(1991, 2M)

Show Answer

Answer:

Correct Answer: 27.$(\frac{1}{64})$

Solution:

Formula:

Double Angle Identities:

  1. $\sin \frac{\pi}{14} \cdot \sin \frac{3 \pi}{14} \cdot \sin \frac{5 \pi}{14} \cdot \sin \frac{7 \pi}{14} \cdot \sin \frac{9 \pi}{14} \cdot \sin \frac{11 \pi}{14} \cdot \sin \frac{13 \pi}{14}$

$=\sin \frac{\pi}{14} \cdot \sin \frac{3 \pi}{14} \cdot \sin \frac{5 \pi}{14} \cdot \sin (\pi-\frac{5 \pi}{14})$ $\cdot \sin (\pi-\frac{3 \pi}{14}) \cdot \sin (\pi-\frac{\pi}{14})$

$=\sin ^{2} \frac{\pi}{14} \cdot \sin ^{2} \frac{3 \pi}{14} \cdot \sin ^{2} \frac{5 \pi}{14}=(\sin \frac{\pi}{14} \cdot \sin \frac{3 \pi}{14} \cdot \sin \frac{5 \pi}{14})^{2}$

$=(\cos (\frac{\pi}{2}-\frac{\pi}{14}) \cdot \cos (\frac{\pi}{2}-\frac{3 \pi}{14}) \cdot \cos (\frac{\pi}{2}-\frac{5 \pi}{14}))^2$

$=(\cos \frac{3 \pi}{7} \cdot \cos \frac{2 \pi}{7} \cdot \cos \frac{\pi}{7})^{2}$

$=(-\cos \frac{\pi}{7} \cdot \cos \frac{2 \pi}{7} \cdot \cos \frac{4 \pi}{7}{ })^{2}$

$=(-\frac{\sin 2^{3} \pi / 7}{2^{3} \cdot \sin \pi / 7})^2$

$=(-\frac{1}{8} \cdot \frac{\sin 8 \pi / 7}{\sin \pi / 7})^{2}$

$ \because \sin \frac{8 \pi}{7}=\sin (\pi+\frac{\pi}{7})=-\sin \frac{\pi}{7}$

$ =\frac{1} {64} $



Table of Contents