Trigonometrical Ratios And Identities Ques 35

Let $f _k(x)=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)$ for $k=1,2,3 \ldots$. Then, for all $x \in R$, the value of $f _4(x)-f _6(x)$ is equal to

(a) $\frac{1}{12}$

(b) $\frac{5}{12}$

(c) $\frac{-1}{12}$

(d) $\frac{1}{4}$

(2019 Main, 11 Jan I)

Show Answer

Answer:

Correct Answer: 35.(a)

Solution:

Formula:

Pythagorean Identities:

  1. We have,

$f _k(x) =\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right), k=1,2,3, \ldots $

$\therefore f _4(x) =\frac{1}{4}\left(\sin ^{4} x+\cos ^{4} x\right) $

$ =\frac{1}{4}((\sin ^{2} x+\cos ^{2} x)^{2}-2 \sin ^{2} x \cos ^{2} x)$

$ =\frac{1}{4} [1-\frac{1}{2}(\sin 2 x)^{2}]=\frac{1}{4}-\frac{1}{8} \sin ^{2} 2 x$

and $f_6(x)=\frac{1}{6}\left(\sin ^{6} x+\cos ^{6} x\right)$

$=\frac{1}{6}(\sin ^{2} x+\cos ^{2} x)^{3}-3 \sin ^{2} x \cos ^{2} x$ $(\sin^{2} x +\cos^{2} x) $

$=\frac{1}{6} [1-\frac{3}{4}(2 \sin x \cos x)^{2}]=\frac{1}{6}-\frac{1}{8} \sin ^{2} 2 x$

Now, $f _4(x)-f _6(x)=\frac{1}{4}-\frac{1}{6}=\frac{3-2}{12}=\frac{1}{12}$



Table of Contents