Trigonometrical Ratios And Identities Ques 37

For any $\theta \in (\frac{\pi}{4}, \frac{\pi}{2})$, the expression $3(\sin \theta-\cos \theta)^{4}+6(\sin \theta+\cos \theta)^{2}+4 \sin ^{6} \theta$ equals

(2019 Main, 9 Jan I)

(a) $13-4 \cos ^{4} \theta+2 \sin ^{2} \theta \cos ^{2} \theta$

(b) $13-4 \cos ^{2} \theta+6 \cos ^{4} \theta$

(c) $13-4 \cos ^{2} \theta+6 \sin ^{2} \theta \cos ^{2} \theta$

(d) $13-4 \cos ^{6} \theta$

Show Answer

Answer:

Correct Answer: 37.(d)

Solution:

Formula:

Pythagorean Identities:

  1. Given expression

$=3(\sin \theta-\cos \theta)^{4}+6(\sin \theta+\cos \theta)^{2}+4 \sin ^{6} \theta$

$=3\left((\sin \theta-\cos \theta)^{2}\right)^{2}+6(\sin \theta+\cos \theta)^{2}+4\left(\sin ^{2} \theta\right)^{3}$

$=3(1-\sin 2 \theta)^{2}+6(1+\sin 2 \theta)+4\left(1-\cos ^{2} \theta\right)^{3}$

$\left[\because 1+\sin 2 \theta=(\cos \theta+\sin \theta)^{2}\right.$ and $\left.1-\sin 2 \theta=(\cos \theta-\sin \theta)^{2}\right]$

$=3\left(1^{2}+\sin ^{2} 2 \theta-2 \sin 2 \theta\right)+6(1+\sin 2 \theta)$

$+4\left(1-\cos ^{6} \theta-3 \cos ^{2} \theta+3 \cos ^{4} \theta\right)$

$\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right.$ and $\left.(a-b)^{3}=a^{3}-b^{3}-3 a^{2} b+3 a b^{2}\right]$

$=3+3 \sin ^{2} 2 \theta-6 \sin 2 \theta+6+6 \sin 2 \theta+4$

$ -4 \cos ^{6} \theta-12 \cos ^{2} \theta+12 \cos ^{4} \theta $

$=13+3 \sin ^{2} 2 \theta-4 \cos ^{6} \theta-12 \cos ^{2} \theta+12 \cos ^{4} \theta$

$=13+3(2 \sin \theta \cos \theta)^{2}-4 \cos ^{6} \theta-12 \cos ^{2} \theta\left(1-\cos ^{2} \theta\right)$

$=13+12 \sin ^{2} \theta \cos ^{2} \theta-4 \cos ^{6} \theta-12 \cos ^{2} \theta \sin ^{2} \theta$

$=13-4 \cos ^{6} \theta$



Table of Contents