Trigonometrical Ratios And Identities Ques 38

The expression $\frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A}$ can be written as

(a) $\sin A \cos A+1$

(b) $\sec A \operatorname{cosec} A+1$

(c) $\tan A+\cot A$

(d) $\sec A+\operatorname{cosec} A$

Show Answer

Answer:

Correct Answer: 38.(b)

Solution:

  1. Given expression is

$\frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A}$

$ \begin{aligned} & =\frac{\sin A}{\cos A} \times \frac{\sin A}{\sin A-\cos A}+\frac{\cos A}{\sin A} \times \frac{\cos A}{\cos A-\sin A} \\ & =\frac{1}{\sin A-\cos A} [\frac{\sin ^{3} A-\cos ^{3} A}{\cos A \sin A} ]\\ & =\frac{\sin ^{2} A+\sin A \cos A+\cos ^{2} A}{\sin A \cos A} \\ & =\frac{1+\sin A \cos A}{\sin A \cos A}=1+\sec A \operatorname{cosec} A \end{aligned} $



Table of Contents