Trigonometrical Ratios And Identities Ques 40

If $\alpha+\beta=\frac{\pi}{2}$ and $\beta+\gamma=\alpha$, then $\tan \alpha$ equals $\quad(2001,1 M)$

(a) $2(\tan \beta+\tan \gamma)$

(b) $\tan \beta+\tan \gamma$

(c) $\tan \beta+2 \tan \gamma$

(d) $2 \tan \beta+\tan \gamma$

Show Answer

Answer:

Correct Answer: 40.(c)

Solution:

Formula:

Sum & Difference Identities:

  1. Given,

$ \begin{array}{lc} \Rightarrow & \alpha=(\pi / 2)-\beta \\ \Rightarrow & \tan \alpha=\tan (\pi / 2-\beta) \\ \Rightarrow & \tan \alpha=\cot \beta \\ \Rightarrow & \tan \alpha \tan \beta=1 \\ \text { Again, } & \beta+\gamma=\alpha \\ \Rightarrow & \gamma=(\alpha-\beta) \\ \Rightarrow & \tan \gamma=\tan (\alpha-\beta) \\ \Rightarrow & \tan \gamma=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \\ \Rightarrow & \tan \gamma=\frac{\tan \alpha-\tan \beta}{1+1} \\ \therefore & 2 \tan \gamma=\tan \alpha-\tan \beta \\ \Rightarrow & \tan \alpha=\tan \beta+2 \tan \gamma \end{array} $



Table of Contents