Trigonometrical Ratios And Identities Ques 41
If $\alpha+\beta+\gamma=2 \pi$, then
$(1979,2 M)$
(a) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
(b) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}+\tan \frac{\beta}{2} \tan \frac{Y}{2}+\tan \frac{Y}{2} \tan \frac{\alpha}{2}=1$
(c) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=-\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
(d) None of the above
Show Answer
Answer:
Correct Answer: 41.(a)
Solution:
Formula:
- Since, $\quad \frac{\alpha}{2}+\frac{\beta}{2}=(\pi-\frac{\gamma}{2})$
$ \therefore \quad \tan (\frac{\alpha}{2}+\frac{\beta}{2})=\tan (\pi-\frac{\gamma}{2}) $
$ \Rightarrow \quad \frac{\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}}{1-\tan \frac{\alpha}{2} \tan \frac{\beta}{2}}=-\tan \frac{\gamma}{2} $
$ \Rightarrow \tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2} $