Trigonometrical Ratios And Identities Ques 41

If $\alpha+\beta+\gamma=2 \pi$, then

$(1979,2 M)$

(a) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$

(b) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}+\tan \frac{\beta}{2} \tan \frac{Y}{2}+\tan \frac{Y}{2} \tan \frac{\alpha}{2}=1$

(c) $\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=-\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$

(d) None of the above

Show Answer

Answer:

Correct Answer: 41.(a)

Solution:

Formula:

Sum & Difference Identities:

  1. Since, $\quad \frac{\alpha}{2}+\frac{\beta}{2}=(\pi-\frac{\gamma}{2})$

$ \therefore \quad \tan (\frac{\alpha}{2}+\frac{\beta}{2})=\tan (\pi-\frac{\gamma}{2}) $

$ \Rightarrow \quad \frac{\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}}{1-\tan \frac{\alpha}{2} \tan \frac{\beta}{2}}=-\tan \frac{\gamma}{2} $

$ \Rightarrow \tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2}=\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2} $



Table of Contents