Trigonometrical Ratios And Identities Ques 43

Let $\theta \in (0, \frac{\pi}{4})$ and $t _1=(\tan \theta)^{\tan \theta}, t _2=(\tan \theta)^{\cot \theta}$, $t _3=(\cot \theta)^{\tan \theta}$ and $t _4=(\cot \theta)^{\cot \theta}$, then

(a) $t_1 > t_2 > t_3 > t_4$

(b) $t_4 > t_3 > t_1> t_2$

(c) $t_3 > t_1 > t_2 > t_4$

(d) $t_2 > t_3 > t_1 > t_4$

(2006, 3M)

Show Answer

Answer:

Correct Answer: 43.(b)

Solution:

Formula:

Domain and Range of Trigonometric Functions:

  1. As when $\theta \in (0, \frac{\pi}{4}), \tan \theta<\cot \theta$

Since, $\quad \tan \theta<1$ and $\cot \theta>1$

$\therefore \quad(\tan \theta)^{\cot \theta}<1$ and $(\cot \theta)^{\tan \theta}>1$

$\therefore t _4>t _1$ which only holds in (b).

Therefore, (b) is the answer.



Table of Contents