Trigonometrical Ratios And Identities Ques 5

  1. Two poles standing on a horizontal ground are of heights $5 \mathrm{m}$ and $10 \mathrm{m}$, respectively. The line joining their tops makes an angle of $15^{\circ}$ with the ground. Then, the distance (in $\mathrm{m}$ ) between the poles, is

(2019 Main, 9 April II)

(a) $5(\sqrt{3}+1)$

(b) $\frac{5}{2}(2+\sqrt{3})$

(c) $10(\sqrt{3}-1)$

(d) $5(2+\sqrt{3})$

Show Answer

Answer:

Correct Answer: 5.(d)

Solution: (d) Given heights of two poles are $5 \mathrm{m}$ and $10 \mathrm{m}$.

i.e. from figure $A C=10 \mathrm{m}, D E=5 \mathrm{m}$

$\therefore \quad A B=A C-D E=10-5=5 \mathrm{m}$

Let $d$ be the distance between two poles.

Clearly, $\triangle A B E \sim \triangle A C F$

[by AA-similarity criterion]

$\therefore \quad \angle A E B=15^{\circ}$

In $\triangle A B E$, we have

$\tan 15^{\circ}=\frac{A B}{B E} \Rightarrow \frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{5}{d}\quad \left [\because \tan 15^{\circ}=\frac{\sqrt{3}-1}{\sqrt{3}+1}\right]$

$\Rightarrow \quad d=\frac{5(\sqrt{3}+1)}{(\sqrt{3}-1)}$

$ \begin{aligned} \Rightarrow \quad d & =5 \frac{\sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\ & =\frac{5(3+2 \sqrt{3}+1)}{3-1}=\frac{5(2 \sqrt{3}+4)}{2} \\ & =\frac{2 \times 5(\sqrt{3}+2)}{2}=5(2+\sqrt{3}) \mathrm{m} \end{aligned} $



Table of Contents