Trigonometrical Ratios And Identities Ques 6

  1. Two vertical poles of heights, $20 \mathrm{m}$ and $80 \mathrm{m}$ stand apart on a horizontal plane. The height (in $\mathrm{m}$ ) of the point of intersection of the lines joining the top of each pole to the foot of the other, from this horizontal plane is

(2019 Main, 8 April II)

(a) $15$

(b) $16$

(c) $12$

(d) $18$

Show Answer

Answer:

Correct Answer: 6.(b)

Solution: (b) Let a first pole $A B$ having height $20 \mathrm{m}$ and second pole $P Q$ having height $80 \mathrm{m}$ and

$\angle P B Q=\alpha, \angle A Q B=\beta$

and $M N=h m$ is the height of intersection point from the horizontal plane

$\because \quad \tan \alpha=\frac{h}{x}=\frac{80}{x+y}\quad \quad [$ in $\triangle M N B$ and $\triangle P Q B]$ $\quad$ ……..(i)

and $\quad \tan \beta=\frac{h}{y}=\frac{20}{x+y}\quad \quad $ [in $\triangle M N Q$ and $\triangle A B Q]$ $\quad$ ……..(ii)

From Eqs. (i) and (ii), we get

$ \frac{y}{x}=4 \Rightarrow y=4 x $ $\quad$ ……..(iii)

From Eqs. (i) and (iii), we get

$ \frac{h}{x}=\frac{80}{x+4 x} \Rightarrow h=\frac{80}{5}=16 \mathrm{m} $



Table of Contents