Trigonometrical Ratios And Identities Ques 8

  1. Consider a triangular plot $A B C$ with sides $A B=7 \mathrm{m}$, $B C=5 \mathrm{m}$ and $C A=6 \mathrm{m}$. A vertical lamp-post at the mid-point $D$ of $A C$ subtends an angle $30^{\circ}$ at $B$. The height (in $\mathrm{m}$ ) of the lamp-post is

(2019 Main, 10 Jan I)

(a) $\frac{2}{3} \sqrt{21}$

(b) $2 \sqrt{21}$

(c) $7 \sqrt{3}$

(d) $\frac{3}{2} \sqrt{21}$

Show Answer

Answer:

Correct Answer: 8.(a)

Solution: (a) According to given information, we have the following figure.

Clearly, length of $B D=\frac{1}{2} \sqrt{2 a^2+2 c^2-b^2}$,

(using Appollonius theorem)

where, $c=A B=7, a=B C=5$

and $b=C A=6 $

$B D=\frac{1}{2} \sqrt{2 \times 25+2 \times 49-36} $

$=\quad \frac{1}{2} \sqrt{112}=\frac{1}{2} 4 \sqrt{7}=2 \sqrt{7}$

Now, let $E D=h$ be the height of the lamp post.

Then, in $\triangle B D E, \tan 30^{\circ}=\frac{h}{B D}$

$\Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{h}{2 \sqrt{7}}$

$\Rightarrow \quad h=\frac{2 \sqrt{7}}{\sqrt{3}}=\frac{2}{3} \sqrt{21}$



Table of Contents