Vectors Ques 57

  1. Let $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ be unit vectors such that $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$. Which one of the following is correct?

(2007, 3M)

(a) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$

(b) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \neq \overrightarrow{\mathbf{0}}$

(c) $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$

(d) $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$ are mutually perpendicular

Show Answer

Answer:

Correct Answer: 57.(b)

Solution:

Formula:

Vector Product Of Two Vectors:

  1. Since, $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are unit vectors and $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{0}}$, then

$\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ represent an equilateral triangle.

$$ \therefore \quad \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} \neq \overrightarrow{\mathbf{0}} $$



Table of Contents