Electromagnetic Induction And Alternating Current Ques 79

(2010)

$I \neq 0, V_{1}$ is proportional to $I$ (p)

alt text

Show Answer

Answer:

Correct Answer: 79.$A \rightarrow r, s, t ; B \rightarrow q, r, s, t ; C \rightarrow q, p ; D \rightarrow q, r, s, t$

Solution:

Formula:

Some Definitions:

  1. In circuit (p) I can’t be non zero in steady state.

In circuit (q) $V_{1}=0$ and $V_{2}=2 I=V$ (also)

In circuit (r) $V_{1}=X_{L} I=(2 \pi f L) I$

$$ \begin{aligned} & =\left(2 \pi \times 50 \times 6 \times 10^{-3}\right) I=1.88 I \\ V_{2} & =2 I \end{aligned} $$

In circuit (s) $V_{1}=X_{L} I=1.88 I$

$$ \begin{aligned} V_{2} & =X_{C} I=\frac{1}{2 \pi f C} I \\ & =\frac{1}{2 \pi \times 50 \times 3 \times 10^{-6}} \quad I=(1061) I \end{aligned} $$

In circuit (t)

$$ \begin{aligned} & V_{1}=I R=(1000) I \\ & V_{2}=X_{C} I=(1061) I \end{aligned} $$

Therefore, the correct options are as under

(A) $\rightarrow \mathrm{r}, \mathrm{s}, \mathrm{t}$

(B) $\rightarrow \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}$

(C) $\rightarrow$ q or $\mathrm{p}, \mathrm{q}$

(D) $\rightarrow \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}$