Electrostatics Ques 5

  1. The electric field $E$ is measured at a point $P(0,0, d)$ generated due to various charge distributions and the dependence of $E$ on $d$ is found to be different for different charge distributions. List-I contains different relations between $E$ and $d$. List-II describes different electric charge distributions, along with their locations. Match the functions in List-I with the related charge distributions in List-II.
List-I List-II
P.$E$ independent
of $d$
1. A point charge $Q$ at the origin
Q. $E \propto \frac{1}{d}$ 2.A small dipole with point
charges $Q$ at $(0,0, l)$ and $-Q$ at
$(0,0,-1)$.
(Take, $2 l«d)$
R. $E \propto \frac{1}{d^2}$ 3.An infinite line charge coincident
with the $X$-axis, with uniform
linear charge density $\lambda$.
S. $E \propto \frac{1}{d^3}$ Two infinite wires carrying a
uniform linear charge density
parallel to the
$X-$ axis. The one along
$(y=0, z=l)$ has a charge
density $+\lambda$ and the one along
$(y=0, z=-l)$ has a charge
density $-\lambda$. (Take, $2 l«d$).

(2018 Adv.)

(a) $\mathrm{P} \rightarrow 5 ; \mathrm{Q} \rightarrow 3,4 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 2$

(b) $\mathrm{P} \rightarrow 5 ; \mathrm{Q} \rightarrow 3 ; \quad \mathrm{R} \rightarrow 1,4 ; \mathrm{S} \rightarrow 2$

(c) $\mathrm{P} \rightarrow 5 ; \mathrm{Q} \rightarrow 3 ; \quad \mathrm{R} \rightarrow 1,2 ; \mathrm{S} \rightarrow 4$

(d) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 2,3 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 5$

Show Answer

Answer:

Correct Answer: 5.( b )

Solution:

  1. List-II

(1) $E=\frac{1}{4 \pi \varepsilon_0} \frac{Q}{d^2}$

$\Rightarrow E \propto \frac{1}{d^2}$

(2) $E_{\text {axis }}=\frac{1}{4 \pi \varepsilon_0} \frac{2 Q(2 l)}{d^3}$

$\Rightarrow \quad E \propto \frac{1}{d^3}$

(3) $E=\frac{\lambda}{2 \pi \varepsilon_0 d} \Rightarrow E \propto \frac{1}{d}$

(4) $E=\frac{\lambda}{2 \pi \varepsilon_0(d-l)}-\frac{\lambda}{2 \pi \varepsilon_0(d+l)}=\frac{\lambda(2 l)}{2 \pi \varepsilon_0 d^2}$

$\Rightarrow E \propto \frac{1}{d^2}$

(5) $E=\frac{\sigma}{2 \varepsilon_0} \Rightarrow$ E is independent of $d$



Table of Contents