General Physics Ques 8

Show Answer

Answer:

Correct Answer: 8.( $\mathrm{A}-\mathrm{s}, \quad \mathrm{B}-\mathrm{q}, \quad \mathrm{C}-\mathrm{p}, \quad \mathrm{D}-\mathrm{r}$ )

Solution:

(A) $ \begin{aligned} \text { } & & U & =\frac{1}{2} k T \\ \Rightarrow & & {\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right] } & =[k] K \\ \Rightarrow & & {[\mathrm{K}] } & =\left[\mathrm{ML}^2 \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right] \end{aligned} $

(B) $ \begin{aligned} F & =\eta A \frac{d v}{d x} \\ \Rightarrow \quad[\eta] & =\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^2 \mathrm{LT}^{-1} \mathrm{~L}^{-1}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right] \end{aligned} $

(C) $ \begin{gathered} E=h \mathrm{v} \\ \Rightarrow \quad\left[\mathrm{ML}^2 \mathrm{~T}^2\right]=[h]\left[\mathrm{T}^{-1}\right] \Rightarrow[h]=\left[\mathrm{ML}^2 \mathrm{~T}^{-1}\right] \end{gathered} $

(D) $ \begin{aligned} & \frac{d Q}{d t}=\frac{k A \Delta \theta}{l} \\ \Rightarrow \quad & {[k]=\frac{\left[\mathrm{ML}^2 \mathrm{~T}^{-3} \mathrm{~L}\right]}{\left[\mathrm{L}^2 \mathrm{~K}\right]}=\left[\mathrm{MLT}^{-3} \mathrm{~K}^{-1}\right] } \end{aligned} $



Table of Contents