Gravitation Ques 1

1 If the angular momentum of a planet of mass $m$, moving around sun in a circular orbit is $L$ about the centre of the sun, its areal velocity is

(Main 2019, 9 Jan I)

(a) $\frac{4 L}{m}$

(b) $\frac{2 L}{m}$

(c) $\frac{L}{2 m}$

(d) $\frac{L}{m}$

Show Answer

Answer:

Correct Answer: 1.( c )

Solution:

The area covered from $P$ to $P^{\prime}$ is $d A$, which is given by

$ \begin{aligned} d A & =\frac{d \theta}{2 \pi} \times \pi r^2 \\ \Rightarrow \quad d A & =\frac{1}{2} r^2 d \theta \text { or } \frac{d A}{d t}=\frac{1}{2} r^2 \frac{d \theta}{d t} \end{aligned} $

where, $\frac{d A}{d t}=$ a real velocity.

$ \frac{d A}{d t}=\frac{1}{2} r^2 \omega \text { or } \frac{d A}{d t}=\frac{1}{2} r^2 \cdot \frac{L}{m r^2} $

(because angular momentum, $L=m r^2 \omega$ )

$ \frac{d A}{d t}=\frac{L}{2 m} $