Heat And Thermodynamics Ques 10

10 A heat source at $T=10^3 \mathrm{~K}$ is connected to another heat reservoir at $T=10^2 \mathrm{~K}$ by a copper slab which is $1 \mathrm{~m}$ thick. Given that the thermal conductivity of copper is $0.1 \mathrm{WK}^{-1} \mathrm{~m}^{-1}$, the energy flux through it in the steady state is

(2019 Main, 10 Jan I)

(a) $90 \mathrm{Wm}^{-2}$

(b) $65 \mathrm{Wm}^{-2}$

(c) $120 \mathrm{Wm}^{-2}$

(d) $200 \mathrm{Wm}^{-2}$

Show Answer

Answer:

Correct Answer: 10.( a )

Solution:

Formula:

Heat Transfer

  1. Energy flux is the rate of heat flow per unit area through the rod.

Also, rate of flow of heat per unit time through a material of area of cross-section $A$ and thermal conductivity $k$ between the temperatures $T_1$ and $T_2\left(T_1>T_2\right)$ is given as,

$ \frac{\Delta Q}{\Delta t}=\frac{k A\left(T_1-T_2\right)}{l} $

Energy flux using Eq. (i), we get

$ =\frac{1}{A} \cdot \frac{\Delta Q}{\Delta t}=\frac{k\left(T_1-T_2\right)}{l} $

Here, $k=0.1 \mathrm{~W} \mathrm{~K}^{-1} \mathrm{~m}^{-1}, l=1 \mathrm{~m}$

$ T_1=1000 \mathrm{~K} \text { and } T_2=100 \mathrm{~K} $

$ \begin{aligned} \therefore \quad \text { Energy flux } & =\frac{01(1000-100)}{1} \\ & =90 \mathrm{Wm}^{-2} . \end{aligned} $