Heat And Thermodynamics Ques 195

  1. Consider an ideal gas confined in an isolated closed chamber. As the gas undergoes an adiabatic expansion, the average time of collision between molecules increases as $V^{q}$, where $V$ is the volume of the gas. The value of $q$ is $\left(\gamma=\frac{C _p}{C _V}\right)$

(a) $\frac{3 \gamma+5}{6}$

(b) $\frac{\gamma+1}{2}$

(c) $\frac{3 \gamma-5}{6}$

(d) $\frac{\gamma-1}{2}$

(2015 Main)

Show Answer

Answer:

Correct Answer: 195.(b)

Solution:

Formula:

Adiabatic process :

  1. Average time between two collisions is given by

$$ \tau=\frac{1}{\sqrt{2} \pi n v _{rms} d^{2}} \cdots(i) $$

Here, $n=$ number of molecules per unit volume $=\frac{N}{V}$

and $\quad v _{rms}=\sqrt{\frac{3 R T}{M}}$

Substituting these values in Eq.(i) we have,

$$ \tau \propto \frac{V}{\sqrt{T}} \cdots(ii) $$

For adiabatic process, $T V^{\gamma-1}=$ constant

substituting in Eq. (ii), we have $\tau \propto \frac{V}{\sqrt{\left(\frac{1}{V^{\gamma-1}}\right)}}$

$\text { or } \quad \tau \propto V^{1+\left(\frac{\gamma-1}{2}\right)} \quad \text { or } \tau \propto V^{\left(\frac{1+\gamma}{2}\right)}$



Table of Contents