Heat And Thermodynamics Ques 97

  1. Two moles of helium gas is mixed with three moles of hydrogen molecules (taken to be rigid). What is the molar specific heat of mixture at constant volume?

[Take, $R=8.3 J / mol-K$ ]

(2019 Main, 12 April I)

(a) $19.7 J / mol-K$

(b) $15.7 J / mol-K$

(c) $17.4 J / mol-K$

(d) $21.6 J / mol-K$

Show Answer

Solution:

Formula:

Isochoric Process

  1. Let molar specific heat of the mixture is $C _V$.

Total number of molecules in the mixture

$$ =3+2=5 $$

$\therefore C _V$ can be determined using

$$ \begin{aligned} n C _V d T & =n _1 C _{V _1} d T+n _2 C _{V _2} d T \\ \text { or }\left(n _1+n _2\right)\left(C _V\right) _{\text {mix }} & =n _1 C _{V _1}+n _2 C _{V _2} \\ & {\left[\text { here, } n=n _1+n _2\right] } \end{aligned} $$

Here, $C _{V _1}=\frac{3 R}{2}$ (for helium); $n _1=2$

$$ C _{V _2}=\frac{5 R}{2} \text { (for hydrogen); } n _2=3 $$

[For monoatomic gases, $C _V=\frac{3}{2} R$ and for diatomic gases, $\left.C _V=\frac{5}{2} R\right]$

$$ \begin{array}{rlrl} & \therefore & 5 \times C _V & =\left(2 \times \frac{3 R}{2}\right)+\left(3 \times \frac{5 R}{2}\right) \\ \Rightarrow & 5 C _V & =\frac{21 R}{2} \\ \text { or } & C _V & =\frac{21 R}{10} \\ & =\frac{21 \times 8.3}{10}=\frac{174.3}{10} \end{array} $$

or

$$ C _V=17.4 J / mol-K $$



Table of Contents