Magnetics Ques 109

  1. A conducting circular loop is made of a thin wire has area $3.5 \times 10^{-3} m^{2}$ and resistance $10$ $ \Omega$. It is placed perpendicular to a time dependent magnetic field $B(t)=(0.4 T) \sin (0.5 \pi t)$. The field is uniform in space. Then the net charge flowing through the loop during $t=0$ $ s$ and $t=10$ $ ms$ is close to

(2019 Main, 9 Jan I)

(a) $6 $ $mC$

(b) $21$ $ mC$

(c) $7 $ $mC$

(d) $14 $ $mC$

Show Answer

Answer:

Correct Answer: 109.(d)

Solution:

Formula:

Magnetic Moment Of A Current Carrying Loop:

  1. Since, the magnetic field is dependent on time, so the net charge flowing through the loop will be given as

$ Q=\frac{\text { change in magnetic flux, } \Delta \phi _B}{\text { resistance, } R} $

As, $\Delta \phi _B=\mathbf{B} \mathbf{A}=B A \cos \theta$

where, $A$ is the surface area of the loop and ’ $\theta$ ’ is an angle between $B$ and $A$.

Here, $\quad \theta=0 \Rightarrow \Delta \phi _B=B A$

$\therefore$ For the time interval, $t=0 ms$ to $t=10 ms$,

$ \begin{aligned} Q & =\frac{\Delta \phi _B}{R} \\ & =\frac{A}{R}\left(B _{f \text { at } 0.01 s}-B _{i \text { at } 0 s}\right) \end{aligned} $

Substituting the given values, we get

$ \begin{aligned} & =\frac{3.5 \times 10^{-3}}{10}[0.4 \sin (0.5 \pi)-0.4 \sin 0] \\ & =3.5 \times 10^{-4}(0.4 \sin \pi / 2) \\ & =1.4 \times 10^{-4} C=14 mC \end{aligned} $



Table of Contents