Magnetics Ques 136

  1. A thin strip $10$ $ cm$ long is on an $U$-shaped wire of negligible resistance and it is connected to a spring of spring constant $0.5$ $ Nm^{-1}$ (see figure). The assembly is kept in a uniform magnetic field of $0.1$ $ T$. If the strip is pulled from its equilibrium position and released, the number of oscillations it performs before its amplitude decreases by a factor of $e$ is $N$. If the mass of the strip is $50$ $ grams$, its resistance $10$ $ \Omega$ and air drag negligible, $N$ will be close to

(2019 Main, 8 April I)

(a) $1000$

(b) $50000$

(c) $5000$

(d) $10000$

Show Answer

Answer:

Correct Answer: 136.(c)

Solution:

Formula:

Magnetic Force Acting On A Current Carrying Wire:

  1. There are two forces on slider

Spring force $=k x$

where, $\quad k=$ spring constant.

As the slider is kept in a uniform magnetic field $B=0.1 T$, hence it will experience a force, i.e.

Magnetic force $=$ Bil

where, $\quad l=$ length of the strip.

Now, using $F _{\text {net }}=m a$

We have,

$ (-k x)+(-B i l)=m a $

$ \begin{array}{ll} \Rightarrow & -k x-B i l-m a=0 \\ \Rightarrow & -k x-\frac{B^{2} l^{2}}{R} \cdot v-m a=0 \quad [\because i=\frac{B l v}{R}] \end{array} $

and acceleration, $a=\frac{d^{2} x}{d t^{2}}$

Hence, the modified equation becomes

$ \Rightarrow \quad \frac{m d^{2} x}{d t^{2}}+\frac{B^{2} l^{2}}{R} (\frac{d x}{d t})+k x=0 $

This is the equation of damped simple harmonic motion.

So, amplitude of oscillation varies with time as

$ A=A _0 e^{-\frac{B^{2} l^{2}}{2 R m} \cdot t} $

Now, when amplitude is $\frac{A _0}{e}$, then

$ \begin{aligned} \frac{A _0}{e} & =\frac{A _0}{e^{\frac{B^{2} l^{2}}{2 R m} \cdot t}} \\ \Rightarrow \quad (\frac{B^{2} l^{2}}{2 R m}) t & =1 \text { or } t=\frac{2 R m}{B^{2} l^{2}} \end{aligned} $

According to the question, magnetic field $B=0.1 T$, mass of strip $m=50 \times 10^{-3} kg$,

resistance $R=10 \Omega, l=10 cm=10 \times 10^{-2} m$

$ \begin{aligned} \therefore \quad t=\frac{2 R m}{B^{2} l^{2}} & =\frac{2 \times 10 \times 50 \times 10^{-3}}{(0.1)^{2} \times\left(10 \times 10^{-2}\right)^{2}} \\ & =\frac{1}{10^{-4}}=10000 s \end{aligned} $

Given, spring constant, $k=0.5 Nm^{-1}$

Also, time period of oscillation is

$ T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{50 \times 10^{-3}}{0.5}}=\frac{2 \pi}{\sqrt{10}} \approx 2 s $

So, number of oscillations is $N=\frac{t}{T}=\frac{10000}{2}=5000$



Table of Contents