Magnetics Ques 19

  1. A proton, an electron and a helium nucleus, have the same energy. They are in circular orbits in a plane due to magnetic field perpendicular to the plane.

Let $r _p, r _e$ and $r _{He}$ be their respective radii, then

(2019 Main, 10 April I)

(a) $r _e<r _p=r _{He}$

(c) $r _e<r _p<r _{He}$

(b) $r _e>r _p=r _{He}$

(d) $r _e>r _p>r _{He}$

Show Answer

Answer:

Correct Answer: 19.(c)

Solution:

Formula:

Magnetic Force Acting On A Moving Point Charge:

  1. When a moving charged particle is placed in a magnetic field B.

Then, the net magnetic force acting on it is

Here,

$ \begin{aligned} \mathbf{F} _m & =q(\mathbf{v} \times \mathbf{B}) \\ \mathbf{F} _m & =q v B \sin \theta \\ \boldsymbol{\theta} & =90^{\circ} \\ \mathbf{F} _m & =q v B \end{aligned} $

Also, due to this net force, the particle transverses a circular path, whose necessary centripetal force is being provided by $F _m$, i.e.

$\frac{m v^{2}}{r} =q v B $

$\Rightarrow \quad r =\frac{m v^{2}}{q v B}=\frac{m v}{q B} $

$\Rightarrow \quad r \propto m$

So, for electron,

$ r _e=\frac{m _e v}{e B} $

$ r _e \propto m _e $

For proton,

$ \begin{aligned} & r _p=\frac{m _p v}{e B} \\ \text { or } \quad & r _p \propto m _p \end{aligned} $

For He-particle,

$ r _{He}=\frac{4 m _p v}{2 e B}=\frac{2 m _p v}{e B} $

Clearly, $\quad r _{He}>r _p$ $ \quad\left(\because r _{He}=2 r _p\right) $

and we know that, $m _p>m _e$

$ [\because m _p \approx 10^{-27} kg] $

$[ m _e \approx 10^{-31} kg]$

$ \begin{array}{lc} \therefore & r _p>r _e \\ \Rightarrow & r _{He}>r _p>r _e \end{array} $



Table of Contents