Magnetics Ques 26

Match the Columns

Matching the information given in the three columns of the following table.

A charged particle (electron or proton) is introduced at the origin $(x=0, y=0, z=0)$ with a given initial velocity $\mathbf{v}$. A uniform electric field $\mathbf{E}$ and a uniform magnetic field $\mathbf{B}$ exist everywhere. The velocity $\mathbf{v}$, electric field $\mathbf{E}$ and magnetic field $\mathbf{B}$ are given in columns $1, 2$ and $3$, respectively. The quantities $E _0, B _0$ are positive in magnitude.

Column 1 Column 2 Column 3
(l) Electron with
$v=2 \frac{E _0}{B _0} \hat{x}$
(i) $E=E _0 \hat{z}$ (P) $B=-B _0 \hat{x}$
(II) Election with
$v=\frac{E _0}{B _0} \hat{y}$
(ii) $E=-E _0 \hat{y}$ (Q) $B=B _0 \hat{x}$
(III) Proton with
$v=0$
(iii) $E=-E _0 \hat{x}$ (R) $B=B _0 \hat{y}$
(IV) Proton with
$v=2 \frac{E _0}{B _0} \hat{x}$
(iv) $E=E _0 \hat{x}$ (S) $B=B _0 \hat{z}$

(2017 Adv.)

  1. In which case will the particle move in a straight line with constant velocity?

(a) (II) (iii) (S)

(b) (III) (iii) (P)

(c) (IV) (i) (S)

(d) (III) (ii) (R)

Show Answer

Answer:

Correct Answer: 26.(a)

Solution:

Formula:

Magnetic Force Acting On A Moving Point Charge:

  1. $\quad \mathbf{F} _{\text {net }}=\mathbf{F} _e+\mathbf{F} _B=q \mathbf{E}+q \mathbf{v} \times \mathbf{B}$

For particle to move in straight line with constant velocity,

$\mathbf{F} _{\text {net }}=0$

$\therefore q \mathbf{E}+q \mathbf{v} \times \mathbf{B}=0$



Table of Contents