Magnetics Ques 94

  1. A loop carrying current $I$ lies in the $x-y$ plane as shown in the figure. The unit vector $\hat{\mathbf{k}}$ is coming out of the plane of the paper. The magnetic moment of the current loop is

(2012)

(a) $a^{2} I \hat{\mathbf{k}}$

(b) $(\frac{\pi}{2}+1) a^{2} I \hat{\mathbf{k}}$

(c) $-(\frac{\pi}{2}+1) a^{2} I \hat{\mathbf{k}}$

(d) $(2 \pi+1) a^{2} I \hat{\mathbf{k}}$

Show Answer

Answer:

Correct Answer: 94.(b)

Solution:

Formula:

Magnetic Moment Of A Current Carrying Loop:

  1. Area of the given loop is

$A=$ (area of two circles of radius $\frac{a}{2}$ and area of a square of side $a$ )

$ \begin{aligned} &=2 \pi (\frac{a}{2}^{2}+a)^{2}=(\frac{\pi}{2}+1) a^{2} \\ &|\mathbf{M}|=I A=(\frac{\pi}{2}+1) a^{2} I \end{aligned} $

From screw law direction of $\mathbf{M}$ is outwards or in positive $z$-direction.

$ \therefore \quad \mathbf{M}=(\frac{\pi}{2}+1) a^{2} I \hat{\mathbf{k}} $



Table of Contents