Modern Physics Ques 158

  1. A particle of mass $M$ at rest decays into two particles of masses $m _1$ and $m _2$ having non-zero velocities. The ratio of the de-Broglie wavelengths of the particles $\lambda _1 / \lambda _2$ is

$(1999,2 M)$

(a) $m _1 / m _2$

(b) $m _2 / m _1$

(c) $1$

(d) $\sqrt{m _2} / \sqrt{m _1}$

Show Answer

Answer:

Correct Answer: 158.(c)

Solution:

Formula:

De Broglie wavelength:

  1. From law of conservation of momentum,

$ p _1=p _2 \quad \text { (in opposite directions) } $

Now de-Broglie wavelength is given by

$ \lambda=\frac{h}{p}, \text { where } h=\text { Planck’s constant } $

Since magnitude of momentum $(p)$ of both the particles is equal, therefore $\lambda _1=\lambda _2$ or $\lambda _1 / \lambda _2=1$



Table of Contents