Modern Physics Ques 167

  1. An $\alpha$-particle and a proton are accelerated from rest by a potential difference of $100 $ $V$. After this, their de-Broglie wavelengths are $\lambda _{\alpha}$ and $\lambda _p$ respectively. The ratio $\frac{\lambda _p}{\lambda _{\alpha}}$, to the nearest integer, is

(2010)

Show Answer

Answer:

Correct Answer: 167.$(3)$

Solution:

Formula:

De Broglie wavelength:

  1. $\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 q q V m}}$ or $\lambda \propto \frac{1}{\sqrt{q m}}$

$ \frac{\lambda _p}{\lambda _{\alpha}}=\sqrt{\frac{q _{\alpha}}{q _p} \cdot \frac{m _{\alpha}}{m _p}}=\sqrt{\frac{(2)(4)}{(1)(1)}}=2.828 $

The nearest integer is $3$.

$\therefore \quad $ Answer is $3 $.



Table of Contents