Modern Physics Ques 176

  1. A particle $A$ of mass ’ $m$ ’ and charge ’ $q$ ’ is accelerated by a potential difference of $50$ $ V$. Another particle $B$ of mass ’ $4 $ $m$ ’ and charge ’ $q$ ’ is accelerated by a potential difference of $2500$ $ V$. The ratio of de-Broglie wavelengths $\frac{\lambda _A}{\lambda _B}$ is close to

(a) $4.47$

(b) $10.00$

(c) $0.07$

(d) $14.14$

(Main 2019, 12 Jan I)

Show Answer

Answer:

Correct Answer: 176.(d)

Solution:

Formula:

De Broglie wavelength:

  1. de-Broglie wavelength associated with a moving charged particle of charge $q$ is

$ \lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m q V}} $

where, $V=$ accelerating potential.

Ratio of de-Broglie wavelength for particle $A$ and $B$ is,

$ \frac{\lambda _A}{\lambda _B}=\frac{\sqrt{m _B q _B V _B}}{\sqrt{m _A q _A V _A}}=\sqrt{\frac{m _B}{m _A}} \cdot \sqrt{\frac{q _B}{q _A}} \cdot \sqrt{\frac{V _B}{V _A}} $

Substituting the given values, we get.

$ \begin{aligned} & =\sqrt{\frac{4 m}{m}} \cdot \sqrt{\frac{q}{q}} \cdot \sqrt{\frac{2500}{50}} \\ & =2 \times 1 \times 5 \times 1.414=14.14 \end{aligned} $



Table of Contents