Modern Physics Ques 177

  1. If the de-Broglie wavelength of an electron is equal to $10^{-3}$ times, the wavelength of a photon of frequency $6 \times 10^{14}$ $ Hz$, then the speed of electron is equal to

(Take, speed of light $=3 \times 10^{8} $ $m / s$,

Planck’s constant $=6.63 \times 10^{-34} $ $J-s$ and

mass of electron $=9.1 \times 10^{-31}$ $ kg$ )

(Main 2019, 11 Jan I)

(a) $1.45 \times 10^{6} $ $m / s$

(b) $1.8 \times 10^{6} $ $m / s$

(c) $1.1 \times 10^{6} $ $m / s$

(d) $1.7 \times 10^{6} $ $m / s$

Show Answer

Answer:

Correct Answer: 177.(a)

Solution:

Formula:

De Broglie wavelength:

  1. Wavelength of the given photon is given as,

$ \begin{aligned} \lambda _p & =\frac{c}{\nu _p}=\frac{3 \times 10^{8}}{6 \times 10^{14}} m \\ & =5 \times 10^{-7} m \end{aligned} $

As, it is given that, de-Broglie wavelength of the electron is

$[\because$ using Eq. (i) $]$

$ \begin{aligned} \lambda _e & =10^{-3} \times \lambda _p \\ & =5 \times 10^{-10} m \end{aligned} $

Also, the de-Broglie wavelength of an electron is given as,

$ \lambda _e=\frac{h}{p}=\frac{h}{m v _e} \Rightarrow v _e=\frac{h}{\lambda _e m _e} $

Substituting the given values, we get

$ \begin{aligned} & =\frac{6.63 \times 10^{-34}}{5 \times 10^{-10} \times 9.1 \times 10^{-31}} m / s \\ & =1.45 \times 10^{6} m / s \end{aligned} $



Table of Contents