Modern Physics Ques 207

  1. The element curium ${ } _{96}^{248} Cm$ has a mean life of $10^{13} s$. Its primary decay modes are spontaneous fission and $\alpha$-decay, the former with a probability of $8 \%$ and the latter with a probability of $92 \%$, each fission releases $200$ $ MeV$ of energy. The masses involved in decay are as follows :

$(1997,5$ M)

${ } _{96}^{248} Cm=248.072220 $ $u$,

${ } _{94}^{244} Pu=244.064100 $ $u$ and ${ } _2^{4} He=4.002603$ $ u$. Calculate the power output from a sample of $10^{20} Cm$ atoms.

$ (1 u=931 $ $MeV / c^{2}) $

Show Answer

Answer:

Correct Answer: 207.$(3.32 \times 10^{-5}$ $W)$

Solution:

Formula:

Radioactive Decay:

  1. The reaction involved in $\alpha$-decay is

$ { } _{96}^{248} Cm \rightarrow{ } _{94}^{244} Pu+{ } _2^{4} He $

Mass defect

$\Delta m=$ mass of ${ } _{96}^{248} Cm-\operatorname{mass}$ of ${ } _{94}^{244} Pu-$ mass of ${ } _2^{4} He$

$=(248.072220-244.064100-4.002603) $ $u$

$=0.005517 $ $u$

Therefore, energy released in $\alpha$-decay will be

$ E _{\alpha}=(0.005517 \times 931) $ $MeV=5.136$ $ MeV $

Similarly, $E _{\text {fission }}=200$ $ MeV$ (given)

Mean life is given as $t _{\text {mean }}=10^{13} s=1 / \lambda$

$\therefore$ Disintegration constant $\lambda=10^{-13} s^{-1}$

Rate of decay at the moment when number of nuclei are $10^{20}$

$ \begin{aligned} & =\lambda N=\left(10^{-13}\right)\left(10^{20}\right) \\ & =10^{7} \text { disintegration per second } \end{aligned} $

Of these disintegrations, $8 \%$ are in fission and $92 \%$ are in $\alpha$-decay.

Therefore, energy released per second

$ \begin{aligned} & =\left(0.08 \times 10^{7} \times 200+0.92 \times 10^{7} \times 5.136\right) MeV \\ & =2.074 \times 10^{8} MeV \end{aligned} $

$\therefore$ Power output (in watt)

$ \begin{aligned} & =\text { energy released per second }(J / s) \\ & =\left(2.074 \times 10^{8}\right)\left(1.6 \times 10^{-13}\right) \end{aligned} $

$\therefore$ Power output $=3.32 \times 10^{-5} $ $W$



Table of Contents