Modern Physics Ques 265

  1. A $27 $ $mW$ laser beam has a cross-sectional area of $10$ $ mm^{2}$. The magnitude of the maximum electric field in this electromagnetic wave is given by

[Take, permittivity of space, $\varepsilon _0=9 \times 10^{-12}$ SI units and speed of light, $c=3 \times 10^{8} $ $m / s]$

(Main 2019, 11 Jan II)

(a) $1 $ $kV / m$

(b) $0.7 $ $kV / m$

(c) $2 $ $kV / m$

(d) $1.4 $ $kV / m$

Show Answer

Answer:

Correct Answer: 265.(d)

Solution:

Formula:

Relation Between The Magnetic Field Vector And The Electric Field Vector:

  1. Given,

Power of laser beam $(P)=27 mW=27 \times 10^{-3} $ $W$

Area of cros- section $(A)=10 m m^{2}=10 \times 10^{-6} m^{2}$

Permittivity of free space $\left(\varepsilon _0\right)=9 \times 10^{-12}$ SI unit

Speed of light $(c)=3 \times 10^{8} $ $m / s$

Intensity of electromagnetic wave is given by the relation

$ I=\frac{1}{2} n c \varepsilon _0 E^{2} $

where, $n$ is refractive index, for air $n=1$.

$\therefore I =\frac{1}{2} c \cdot \varepsilon _0 E^{2}$ $\quad$ …….(i)

$\text { Also, } I =\frac{P}{A}$ $\quad$ …….(ii)

From Eq. (i) and (ii), we get

$ \begin{aligned} \frac{1}{2} c \varepsilon _0 E^{2} & =\frac{P}{A} \text { or } E^{2}=\frac{2 P}{A c \varepsilon _0} \\ E & =\sqrt{\frac{2 \times 27 \times 10^{-3}}{10 \times 10^{-6} \times 3 \times 10^{8} \times 9 \times 10^{-12}}} \\ & \simeq 1.4 \times 10^{3} V / m=1.4 kV / m \end{aligned} $



Table of Contents