Modern Physics Ques 273

  1. In an electron microscope, the resolution that can be achieved is of the order of wavelength of electrons used. To resolve a width of $7.5 \times 10^{-12}$ $ m$, the minimum electron energy required is close to

(Main 2019, 10 Jan I)

(a) $500 $ $keV$

(b) $1 $ $keV$

(c) $100 $ $keV$

(d) $25 $ $keV$

Show Answer

Answer:

Correct Answer: 273.(d)

Solution:

Formula:

De Broglie wavelength:

  1. Given, resolution achieved in electron microscope is of the order of wavelength.

So, to resolve $7.5 \times 10^{-12} m$ seperation wavelength associated with electrons is

$ \lambda=7.5 \times 10^{-12} m $

$\therefore$ Momentum of electrons required is

$ p=\frac{h}{\lambda} $

or kinetic energy of electron must be

$ KE=\frac{p^{2}}{2 m}=\frac{(h / \lambda)^{2}}{2 m} $

Substituting the given values, we get

$ \begin{aligned} & =\frac{\left(\frac{6.6 \times 10^{-34}}{7.5 \times 10^{-12}}\right)^2}{2 \times 9.1 \times 10^{-31}} J \\ & =\frac{\left(6.6 \times 10^{-34}\right)^{2}}{2 \times 9.1 \times 10^{-31} \times\left(7.5 \times 10^{-12}\right)^{2} \times\left(1.6 \times 10^{-19}\right)} eV \\ & \quad\left(\because 1 eV=1.6 \times 10^{-19} J\right) \\ & =26593.4 \simeq 26.6 \times 10^{3} eV \simeq 26 keV \end{aligned} $

which is nearest to $25$ $ keV$.



Table of Contents