Modern Physics Ques 274
- In free space, the energy of electromagnetic wave in electric field is $U _E$ and in magnetic field is $U _B$. Then
(a) $U _E=U _B$
(b) $U _E>U _B$
(c) $U _E<U _B$
(d) $U _E=\frac{U _B}{2}$
(Main 2019, 9 Jan II)
Show Answer
Answer:
Correct Answer: 274.(a)
Solution:
- Energy density of an electomagnetic wave in electric field,
$ U _E=\frac{1}{2} \varepsilon _0 \cdot E^{2} $ $\quad$ …….(i)
Energy density of an electromagnetic wave in magnetic field,
$ U _B=\frac{B^{2}}{2 \mu _0} $ $\quad$ …….(ii)
where, $E=$ electric field,
$B$ =magnetic field,
$\varepsilon _0=$ permittivity of medium and
$\mu _0=$ magnetic permeability of medium.
From the theory of electro-magnetic waves, the relation between $\mu _0$ and $\varepsilon _0$ is
$ c=\frac{1}{\sqrt{\mu _0 \varepsilon _0}} $ $\quad$ …….(iii)
where, $c=$ velocity of light $=3 \times 10^{8} m / s$
$ \text { and } \quad \frac{E}{B}=c $ $\quad$ …….(iv)
Dividing Eq. (i) by Eq. (ii), we get
$ \frac{U _E}{U _B}=\frac{\frac{1}{2} \varepsilon _0 E^{2}}{\frac{1}{2} B^{2} \times \frac{1}{\mu _0}}=\frac{\mu _0 \varepsilon _0 E^{2}}{B^{2}} $ $\quad$ …….(v)
Using Eqs. (iii), (iv) and (v), we get
$ \frac{U _E}{U _B}=\frac{c^{2}}{c^{2}}=1 $
Therefore, $\quad U _E=U _B$