Modern Physics Ques 288

  1. Light is incident normally on a completely absorbing surface with an energy flux of $25$ $ W cm^{-2}$. If the surface has an area of $25 $ $cm^{2}$, the momentum transferred to the surface in $40 $ $ min$ time duration will be

(a) $3.5 \times 10^{-6}$ $ N-s$

(b) $6.3 \times 10^{-4}$ $ N-s$

(c) $1.4 \times 10^{-6}$ $ N-s$

(d) $5.0 \times 10^{-3}$ $ N-s$

Show Answer

Answer:

Correct Answer: 288.(d)

Solution:

  1. Radiation pressure over an absorbing surface is, $p=\frac{I}{c}$ where, $I$ =intensity or energy flux

and $c=$ speed of light.

If $A=$ area of surface, then force due to radiation on the surface is

$ F=p \times A=\frac{I A}{c} $

If force $F$ acts for a duration of $\Delta t$ seconds, then momentum transferred to the surface is

$ \Delta p=F \times \Delta t=\frac{I A}{c} \times \Delta t $

Here, $I=25 W$ $ cm^{-2}, A=25 $ $cm^{2}$,

$c=3 \times 10^{8}$ $ ms^{-1}, \Delta t=40 $ $ min=2400 $ $s$

So, momentum transferred to the surface,

$ \Delta p=\frac{25 \times 25 \times 2400}{3 \times 10^{8}}=5 \times 10^{-3} $ $N-s $



Table of Contents