Modern Physics Ques 295
- A nucleus at rest undergoes a decay emitting an $\alpha$-particle of de-Broglie wavelength, $\lambda=5.76 \times 10^{-15} $ $m$. If the mass of the daughter nucleus is $223.610 $ $amu$ and that of the $\alpha$-particle is $4.002 $ $amu$. Determine the total kinetic energy in the final state. Hence obtain the mass of the parent nucleus in $ amu$.
$(1 $ $amu=931.470$ $ MeV / c^{2})$
$(2001,5 M)$
Show Answer
Answer:
Correct Answer: 295.(a) $6.25 $ $MeV$, (b) $227.62 $ $amu$
Solution:
Formula:
- (a) Given mass of $\alpha$-particle, $m=4.002$ $amu $and mass of daughter nucleus,
$ M=223.610$ $amu $
de-Broglie wavelength of $\alpha$-particle,
$ \lambda=5.76 \times 10^{-15} $ $m $
So, momentum of $\alpha$-particle would be
$ \begin{aligned} p & =\frac{h}{\lambda}=\frac{6.63 \times 10^{-34}}{5.76 \times 10^{-15}} kg-m / s \\ \text { or } \quad p & =1.151 \times 10^{-19} kg-m / s \end{aligned} $
From law of conservation of linear momentum, this should also be equal to the linear momentum of the daughter nucleus (in opposite direction).
Let $K _1$ and $K _2$ be the kinetic energies of $\alpha$-particle and daughter nucleus. Then total kinetic energy in the final state is
$ \begin{aligned} K & =K _1+K _2=\frac{p^{2}}{2 m}+\frac{p^{2}}{2 M}=\frac{p^{2}}{2} \left(\frac{1}{m}+\frac{1}{M}\right) \\ K & =\frac{p^{2}}{2} \left(\frac{M+m}{M m}\right) \\ 1 amu & =1.67 \times 10^{-27} kg \end{aligned} $
Substituting the values, we get
$ \begin{aligned} & K=10^{-12} J \\ & K=\frac{10^{-12}}{1.6 \times 10^{-13}}=6.25 MeV \end{aligned} $
(b) Mass defect, $\Delta m=\frac{6.25}{931.470}=0.0067 $ $amu$
Therefore, mass of parent nucleus $=$ mass of $\alpha$-particle + mass of daughter nucleus + mass $\operatorname{defect}(\Delta m)$
$ \begin{aligned} & =(4.002+223.610+0.0067) amu \\ & =227.62 amu \end{aligned} $
Hence, mass of parent nucleus is $227.62 $ $amu$.